Top Rank Optimization in Linear Time

نویسندگان

  • Nan Li
  • Rong Jin
  • Zhi-Hua Zhou
چکیده

Bipartite ranking aims to learn a real-valued ranking function that orders positive instances before negative instances. Recent efforts of bipartite ranking are focused on optimizing ranking accuracy at the top of the ranked list. Most existing approaches are either to optimize task specific metrics or to extend the ranking loss by emphasizing more on the error associated with the top ranked instances, leading to a high computational cost that is super-linear in the number of training instances. We propose a highly efficient approach, titled TopPush, for optimizing accuracy at the top that has computational complexity linear in the number of training instances. We present a novel analysis that bounds the generalization error for the top ranked instances for the proposed approach. Empirical study shows that the proposed approach is highly competitive to the stateof-the-art approaches and is 10-100 times faster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digitally Excited Reconfigurable Linear Antenna Array Using Swarm Optimization Algorithms

This paper describes the synthesis of digitally excited pencil/flat top dual beams simultaneously in a linear antenna array constructed of isotropic elements. The objective is to generate a pencil/flat top beam pair using the excitations generated by the evolutionary algorithms. Both the beams share common variable discrete amplitude excitations and differ in variable discrete phase excitations...

متن کامل

A Comprehensive Study of the Hydroforming Process of Metallic Bellows: Investigation and Multi-objective Optimization of the Process Parameters

In this paper, for the first time, a comprehensive experimental study is performed on hydroforming process of metallic bellows. For this purpose, the effects of the main process parameters and their interactions on the characteristics of hydroformed metallic bellows are investigated using Response Surface Methodology (RSM). The selected parameters as input variables are internal pressure, die s...

متن کامل

Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Our algorithm has a linear convergence rate when the objective function is smooth and str...

متن کامل

Fuzzy Multi-Objective Linear Programming for Project Management Decision under Uncertain Environment with AHP Based Weighted Average Method

Smooth implementation and controlling conflicting goals of a project with the usage of all related resources through organization is inherently a complex task to management. At the same time deterministic models are never efficient in practical project management (PM) decision problems because the related parameters are frequently fuzzy in nature. The project execution time is a major concern o...

متن کامل

Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization

This paper is concerned with the problem of finding a low-rank solution of an arbitrary sparse linear matrix inequality (LMI). To this end, we map the sparsity of the LMI problem into a graph. We develop a theory relating the rank of the minimum-rank solution of the LMI problem to the sparsity of its underlying graph. Furthermore, we propose three graph-theoretic convex programs to obtain a low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014